MR Imaging of the Hip

Doris E. Wenger, M.D. Mayo Clinic, Rochester, MN

Introduction

Indication for MR imaging of the hip

- AVN
- Occult Fractures
- Labral Tear
- Tumors
 - benign and malignant
 - detect and characterize
- Soft tissue injury
 - tendon tear, muscle strain, hematoma
- Arthritis
- Hip pain with negative conventional radiograph

Advantages of MRI

- Superior soft tissue contrast
- Multiplanar Imaging
- No iodinated contrast
- No exposure to radiation
- Sensitive, accurate & cost effective
- Provides comprehensive exam

Normal Anatomy of Hip Joint

- Synovial lined ball-and-socket joint
 - Femoral head constrained within relatively deep acetabulum
 - Designed to maintain stability while transmitting large forces
 - Peri-articular soft tissue structures contribute to stability
 - --capsule, ligaments, labrum, muscles & tendons
- Articular Cartilage
 - horseshoe-shaped cartilage lines acetabulum
 - cartilage-devoid region of acetabulum medially → fossa
 - acetabular fossa covered by fibrofatty tissue, synovium and ligamentum teres
 - cartilage is thin (~3mm in thickness)
 - femoral head covered with cartilage (except @ fovea)
- Acetabular Labrum
 - attached to the rim of the acetabulum
 - deepens acetabulum and provides additional coverage of femoral head
 - comprised of fibrocartilage, triangular in cross section
 - thickness posterosuperiorly & thinner anteroinferiorly
- Joint Capsule
 - extends from margin of acetabular rim to base of femoral neck
 - proximal femoral physis is intracapsular and trochanters are extra-capsular
 - inserts to acetabular rim @ base of labrum
 - --creates peri-labral recess
 - extrinsic ligaments (external to fibrous capsule)
 - --reinforce the joint
 - --pubofemoral, iliofemoral & ischiofemoral ligaments
 - --zona orbicularis encircles capsule @ base of neck

- iliofemoral ligament restricts extension and posterior displacement of hip
- ischiofemoral ligament stabilizes the hip in flexion and adduction
- pubofemoral ligament restricts hip abduction
- iliopsoas tendon & bursa
 - --intimately associated with anterior aspect of hip joint
 - --direct communication between joint & bursa in 10-15% of the population
 - --hiatus between the iliofemoral and pubofemoral ligaments

• Ligamentum teres

- extends from acetabular notch to fovea capitus of femoral head
- carries artery of the ligamentum teres (supplies blood to femoral head in children)
- may serve as transarticular route for spread of tumor

MR Imaging Protocols

- Vary with indication and equipment
- General protocol categories
 - routine "screening" hip (R/O AVN, non-specific hip pain)
 - dedicated unilateral hip (internal derangement, lesion characterization)
 - MR arthrography (intra-articular gadolinium)
- Surface or phased array torso coil

Routine "Screening" Hip MRI Protocol				
	Sequence/Weighting			
Parameter	SE T1	FSE-XL T2		
Imaging Plane	Axial	Axial		
	Coronal	Coronal		
TR (ms)	500-600	3000-4000		
TE (ms)	minimum full	90		
NEX	2	2		
Matrix	256 x 256	256 x 256		
FOV (cm)	38 or to fit	38 or to fit		
Thickness/gap (mm)	7/3 (axial), 5/2.5 (coronal)	7/3 (axial), 5/2.5 (coronal)		
Fat Saturation	no	yes		

Unilateral Hip MRI Protocol				
	Sequence/Weighting			
Parameter	FSE-XL T2	FSE-XL T1		
Imaging Plane	Axial	Axial		
	Coronal	Coronal		
	Sagittal			
TR (ms)	3500	600		
TE (ms)	45	minimum full		
NEX	2	2		
Matrix	256 x 256 (axial)	256 x 256		
	256 x 224 (cor & sag)			
FOV (cm)	22 (axial), 24 (cor & sag)	22 (axial), 24 (coronal)		
Thickness/gap (mm)	6/2 (axial), 5/1 (cor & sag)	6/2 (axial), 5/1 (coronal)		
Fat Saturation/TRF/zip512	yes	no		

MR Arthrography (2 step procedure)

- 1. Intra-articular gadolinium injection
 - Fluoroscopic guidance; use sterile technique & local anesthesia
 - Access joint with 22 g spinal needle
 - Document intra-articular position with 2-3 cc's iodinated contrast
 - Inject diluted gadolinium solution
 - 10-15 cc's (titrate to patient)
 - 1:200 Gadolinium: normal saline dilution (0.1 cc Gad: 20 cc's NS)
- 2. MR Arthrography Imaging Protocol

Post Gadolinium HIP MRI Protocol				
	Sequence/Weighting			
Parameter	FSE-XL T1	FSE-XL T2	FSE-XL T1	
Imaging Plane	Axial	Axial	Coronal	
	Coronal or oblique coronal	Sagittal		
	Sagittal or oblique Sagittal			
TR (ms)	600-650	4000	500-600	
TE (ms)	minimum full	40-45	minimum full	
NEX	2	2	2	
Matrix	256 x 224	256 x 256	256 x 224	
FOV (cm)	16	16	16	
Thickness/gap (mm)	3/0.5	3/0.5	3/0.5	
Fat Saturation/TFF/zip512	yes	yes	no	

HIP PATHOLOGY

Labral Tears

- †'d attention in orthopedic & radiology literature over past decade
- Increasingly recognized as a cause of hip pain
- Patients present with inguinal pain, painful clicking, transient locking or giving way
- Pain with flexion, adduction & internal rotation
- Common etiologies
 - OA, DDH, Perthes, Trauma
- Less common etiologies
 - Subtle structural abnormalities
 - Femoroacetabular impingement

Femoroacetabular Impingement

- Pathogenic factor in development of "idiopathic" osteoarthritis of the hip
- Clinical characteristics
 - painful internal rotation of hip
 - positive impingement test (pain @ 90° flexion, adduction and internal rotation)
- Etiology
 - reduced concavity of anterior femoral head-neck junction or prominent acetabular rim
 - abnormal contact between neck & anterosuperior acetabular rim
 - associated with labral tears & cartilage defects
- Two major types
 - CAM & Pincer

- Conventional radiographic findings
 - decrease in femoral head-neck offset
 - retroversion of the acetabulum
 - osteophytic or cystic changes in region of anterosuperior femoral neck
 - cystic change & sclerosis in the roof of the acetabulum
- MR imaging findings
 - labral tear (usually anterosuperior)
 - chondromalacia
 - subchondral degenerative change & edema
 - --femoral head-neck junction
 - --roof of acetabulum
- Treatment options
 - periacetabular osteotomy
 - femoral head-neck re-contouring procedure
 - proximal femoral osteotomy
- Diagnosis
 - -combination of radiograph & MRI
 - -Many structural abnormalities can be identified on conventional radiographs
 - -familiarity with structural abnormalities on radiography is critical
 - --early detection
 - --accurate diagnosis
 - --optimize treatment plan & prognosis
 - --prevent or delay pain & disability

Normal Acetabular Labrum

- Homogeneous low signal intensity
- Triangular morphology
- Continuous attachment between labrum and acetabulum
- Peri-labral recess between labrum and joint capsule

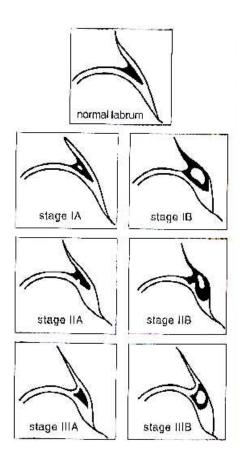
Abnormal Acetabular Labrum

- Labral degeneration
 - abnormal signal intensity within substance of labrum
- Labral tear
 - round, blunted or flattened morphology
 - intra-substance contrast material or abnormal signal extending to labral margin
 - most commonly occur in anterosuperior quadrant of the labrum
- Labral detachment
 - displaced or non-displaced
 - abnormal signal or contrast insinuation between labrum and acetabulum
- Labral thickening
 - loss of normal recess between labrum and joint capsule

Injuries Associated with Labral Tear or Detachment

- Chondral defects
 - occur in up to 30% of patients with labral lesion
- Para-labral Cyst
 - may be seen with labral tear, especially with labral detachment
 - ↑ prevalence in OA, DDH & post-traumatic injury

- juxta-articular, usually superolateral or anterosuperior
- may or may not fill with gadolinium @ time of MR arthrography
- identification of cyst → should raise clinical suspicion of underlying labral tear


Staging of Acetabular Labral Lesions (see Figure 1)

- Stage 0
 - homogenous low signal intensity with triangular morphology
 - normal acetabular labral interface and peri-labral recess
- Stage 1 A
 - presence of intra-labral signal which does not extend to labral margin
- Stage 2 A
 - presence of intra-substance contrast material extending to labral margin
- Stage 3 A
 - displaced or non-displaced labral detachment from acetabulum
- Stages 1 through 3, Type B

– as

described in Type A 1-3 with addition of hypertrophy of labrum

- obliteration of peri-labral recess

Figure One: Schematic diagram illustrating the classification system used to stage labral abnormalities (Czerny et al, Radiology 1996; 200:225-230)

Accuracy of MRI for Diagnosis of Acetabular Labral Tear

- MR arthrography
 - 90 % sensitivity
 - -91 % accuracy
- Conventional MR imaging
 - 30 % sensitivity
 - 36 % accuracy

Advantages of MR Arthrography

- Accurate anatomic delineation of labral anatomy and pathology
- Increased sensitivity for detection of labral pathology
 - contrast dissects into labrum or between labrum and acetabulum
 - − ↑ conspicuity labral tear and/or detachment
- Comprehensive evaluation of bones & soft tissues within and about the joint

Osteonecrosis

- Femoral head is the most common site
- Pathogenesis → vascular compromise
 - intra-osseous hypertension with vascular stasis
 - thromboembolic abnormalities
 - traumatic disruption of blood vessels
- Risk Factors
 - corticosteroids
 - alcoholism
 - pancreatitis
 - hemoglobinopathies (sickle cell disease)
 - collagen vascular disease
 - trauma
 - barotrauma

MR Imaging of AVN

- Sensitivity, specificity & accuracy of MRI for diagnosis of AVN is > in 90%
- MRI is more sensitive than CT or nuclear scintigraphy
- MRI is 97% sensitive and 98% specific in differentiating AVN from other pathology
- MRI also effective for evaluating for associated joint effusion & marrow edema
 - -edema may extend to intertrochanteric region (especially with Stage III)
 - -joint effusions are variable in size (larger in Stage III and IV)
- Imaging features vary with stage and extent of disease
- Focal subchondral signal abnormality on T1 and T2 weighted images
 - -crescentic, round, band-like focus of abnormal subchondral signal
 - -may be demarcated by a serpiginous margin
- "Double Line Sign"
 - pathognomonic for AVN
 - concentric bands of low & high SI on T2 weighted images
 - reactive granulation tissue at interface between necrotic & normal bone

Transient Bone Marrow Edema

- Also known as transient osteoporosis
- Self-limited disorder, gradual onset of pain over weeks to months
- May be regional and migratory
- Gradual onset of pain over weeks to months
- Typical affects patients in the 20-50 year age range
- Male to female ratio 3:1
- Hip is the most common joint involved

Imaging features of Transient Bone Marrow Edema

- Radiographs shows regional osteopenia of femoral head and neck
- No erosions or joint space narrowing
- MRI is the imaging modality of choice
 - highly sensitive and specific
- MR imaging findings
 - ill-defined region of signal abnormality with low T1 & high T2 signal
 - involves femoral head & neck from joint surface to intertrochanteric region
 - absence of focal subchondral defect to indicate etiology due to AVN or fracture
 - signal abnormality resolves over 3-6 months if followed with sequential MRI

Fractures

- MRI sensitive & specific for occult fracture detection
 - stress fractures
 - non-displaced traumatic fractures (e.g. femoral neck)
- Accurate diagnosis can be difficult on radiographs
 - especially elderly osteoporotic patients
- Early and accurate diagnosis is critical for prompt and appropriate treatment
- MRI is imaging modality of choice
 - patients with high clinical suspicion of fracture & negative radiograph
- Spectrum of fractures detected on MRI with negative x-ray
 - femoral neck fractures
 - intertrochanteric fractures
 - stress fractures
 - subchondral insufficiency fracture of the femoral head
 - extra-articular sites
 - --pubic rami
 - --sacrum
 - --supra-acetabular ilium

Stress Fractures

- fatigue
 - --abnormal stress applied to normal bone
- $-\,in sufficiency$
 - --normal stress applied to abnormally weakened bone
- Etiology of insufficiency fractures
 - osteoporosis
 - -RA
 - osteomalacia
 - renal osteodystrophy
 - radiation
- MR imaging of insufficiency type stress fractures
 - comparable sensitivity & superior specificity to nuclear scintigraphy
 - T1 weighted images
 - --linear focus of low SI
 - --surrounded by larger ill-defined region of hazy or reticulated ↓ in SI

- T2 weighted images
 - --linear focus of low SI
 - --surrounded by larger region of high SI
 - --signal abnormality >> 'r than on T1
 - --↑ sensitivity for detection with fat suppression techniques
- frequently associated with soft tissue edema

Subchondral insufficiency fracture of femoral head

- typically seen in osteoporotic women
- acute onset of pain
- no risk factors for AVN
- MR imaging
 - --bone marrow edema which may extend to intertrochanteric region
 - --transverse linear focus of low SI in subchondral region of femoral head
- may progress to subchondral collapse

Arthropathies

- Differential diagnosis for arthritides of the hip joint
 - osteoarthritis
 - inflammatory arthritis
 - septic arthritis
 - other (PVNS, synovial chondromatosis)
- MRI is not usually required for diagnosis. Correlation with radiographs is critical.

Septic Arthritis

- More common in children than adults
- Risk factors
 - septicemia
 - previous joint injection
 - immunocompromised status
- Radiographs
 - may be negative
 - osteopenia
 - periarticular soft tissue swelling
 - $-\pm$ erosions & joint space narrowing
- MR imaging features
 - joint effusion & synovitis
 - $-\pm$ erosions & joint space narrowing
 - late stage may reveal extra-articular extension
 - --periarticular soft tissue edema
 - --soft tissue abscess
 - --osteomyelitis

Pigmented Villonodular Synovitis

- Benign proliferative synovial process
- Involves joint, bursa or tendon sheath
- Typically affects young to middle-age adults
- Anatomic sites of predilection
 - knee (80%), hip, ankle, shoulder
- Conventional Radiography
 - hyperdense joint effusion
 - preservation of joint space & bone density, \pm bone erosions
- MR Imaging Features
 - joint effusion with nodular synovial thickening
 - nodular masses with low SI on T1 & T2 weighted images

- -- due to hemosiderin deposition
- low SI nodules typically surrounded by high SI fluid on T2 weighted images
- $-\pm$ blooming on gradient echo image acquisition
- differential diagnosis
 - --synovial chondromatosis
 - --chronic proliferative synovitis
 - --hemophilic arthropathy

Synovial Chondromatosis

- Cartilage metaplasia in synovium
- Monoarticular disease, M:FM ratio 2:1, peak incidence 3rd-5th decade
- Skeletal distribution
 - knee (50%), hip, elbow, shoulder, ankle
- Conventional radiography
 - multiple, calcified intra-articular loose bodies of fairly uniform size
 - 70-75% show calcification on x-ray
 - preservation of joint space & normal bone density
- MR Imaging features
 - joint effusion (high SI on T2 weighted images)
 - multiple tiny round low signal intensity nodules of uniform size
 - low SI on T1 & T2
 - --low T2 signal reflects calcification/mineralization
 - $-\pm$ bone erosions
 - differential diagnosis on x-ray
 - --osteoarthritis
 - --trauma
 - --osteochondritis dissecans
 - --neuropathic joint disease
 - differential diagnosis on MRI
 - --PVNS
 - --rheumatoid arthritis
 - --chronic proliferative synovitis

Miscellaneous Pathology-Diagnostic dilemmas & tumor simulators

- Occult neoplasms (e.g. lymphoma)
- Osteoid osteoma
- Calcific tendonitis
- Myositis ossificans

Bibliography

- 1. Abe I, Yoshitada H, Oinuma K, et al. Acetabular Labrum: abnormal findings at MR Imaging in asymptomatic hips. *Radiol* 2000;216:576-581.
- 2. Andrews CL. From the RSNA refresher courses: Evaluation of the marrow space in the adult hip. *RadioGraphics* 2000;20:S27-S42.
- 3. Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage. *The Journal of Bone and Joint Surgery* 2005;87-B:1012-18.
- 4. Beltran J, Herman LJ, Burk JM, et al. Femoral head avascular necrosis: MR imaging with clinical-pathologic and radionuclide correlation. *Radiology* 1988;166:215-220.
- 5. Bluemke DA, Petri M, Zerhouni EA: Femoral head perfusion and composition: MRI and MRS evaluation in patients at risk for avascular necrosis. *Radiology* 1995;197:433-438.
- 6. Bogost GA, Lizerbram EK, Crues JV. MR imaging in evaluation of suspected hip fracture: frequency of unsuspected bone and soft tissue injury. *Radiology* 1995; 197: 263-267.
- 7. Cotton A, Boutry N, Demondion X, et al. Acetabular Labrum: MRI in asymptomatic volunteers. *J Comput Assist Tomog.* 1998;22:1-7.

- 8. Czerny C, Hofmann S, Neuhold A, et al. Lesions of the Acetabular Labrum: Accuracy of MR Imaging and MR Arthrography in detection and staging. *Radiol* 1996;200:225-230.
- 9. Czerny C, Hofmann S, Urban M, et al. MR Arthrography of the Adult Acetabular Capsular-Labral Complex: Correlation with surgery and anatomy. *AJR* 1999;173:345-349.
- 10. Delaunay S, Dussault RG, Kaplan PA, Alford BA: Radiographic measurements of dysplastic adult hips. *Skeletal Radiol* 1997; 26:75-81.
- 11. Eijeer H, Leunig M, Mahomed N, Ganz R: Cross-table lateral radiographs for screening of anterior femoral head-neck offset in patients with femoro-acetabular impingement. *Hip Int* 2001; 11:37-41.
- 12. Gaeta M, Mazziotti S, Minutoli F, Vince S, Blandino A. Migrating transient bone marrow edema syndrome of the knee: MRI findings in a new case. *Eur Radiol*. 2002; 12:S40-S42.
- 13. Ganz R, Gill TJ, Gautier E, Ganz K, Krügel N, Berlemann U: Surgical dislocation of the adult hip: A technique with full access to the femoral head and acetabulum without the risk of avascular necrosis. *J Bone Joint Surg* 2001; 83B:1119-1124.
- 14. Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock K: Femoroacetabular impingement: A cause for osteoarthritis of the hip. *Clin Orthop* 2003; 417:112-120.
- 15. Guerra JJ, Steinberg ME. Current concepts review: distinguishing transient osteoporosis from avascular necrosis of the hip. *JBJS* 1995; 77: 616.
- 16. Haims A, Katz LD, Busconi B. MR Arthrography of the Hip. *Radiologic Clinics of North America* 1998; 36:691-702.
- 17. Hayes CW, Conway WF, Daniel WW. MR Imaging of bone marrow edema pattern: transient osteoporosis, transient bone marrow edema syndrome or osteonecrosis. *Radiographics* 1993; 13: 1001.
- 18. Hodler J, Yu JS, Goodwin D, et al. MR Arthrography of the Hip: Improved Imaging of the Acetabular Labrum with Histologic Correlation. *American Journal of Roentgenology* 1995;165:887-891.
- 19. Ito K, Minka II MA, Leunig M, Werlen S, Ganz R: Femoroacetabular impingement and the cam-effect. *J Bone Joint Surg* 2001; 83B:171-176.
- 20. Jager M, Wild A, Westhoff B, Krauspe R.. Femoracetabular impingement caused by a femoral osseous head-neck bump deformity: clinical, radiological, and experimental results. *J Orthopaedic Science* 2004;9:256-263.
- 21. Jelinek, J Kransdorf M, Utz J, et al. Imaging of pigmented villonodular synovitis with emphasis on MR imaging. *AJR* 1989; 152:337-342
- 22. Kassarjian A, Yoon LS, Belzile E, Connolly SA, Millis MB, Palmer WE. Triad of MR arthrographic findings in patients with cam-type femoroacetabular impingement. *Radiol* 2005;236:588-592.
- 23. Lafforgue P, Dahan E, Chagnaud C, Schiano A, Kasbarian M, Acquaviva PC: Early-stage avascular necrosis of the femoral head: MR imaging for prognosis in 31 cases with at least 2 years of follow-up. *Radiol* 1993;187:199-204.
- 24. Leunig M, Beck M, Morteza K, Young-Jo K, Werlen S, Ganz R. Fibrocystic changes at anterosuperior femoral neck: prevalence in hips with femoroacetabular impingement. *Radiol* 2005;236:237-246.
- 25. Leunig M, Werlen S, Ungersbock A, Ito K, Ganz R. Evaluation of the Acetabular Labrum by MR Arthrography. *J Bone Joint Surg (Br)* 1997;79-B:230-4.
- 26. Magee T, Hinson G. Association of Paralabral Cysts with Acetabular Disorders. *American Journal of Roentgenology* 2000;174:1381-1384.
- 27. May DA, Purins JL, Smith DK. MR Imaging of occult traumatic fractures and muscular injuries of the hip and pelvis in elderly patients. *AJR* 1996;166, 1075.
- 28. Mitchell DG, Rao VM, Dalinka MK, et al. Femoral head avascular necrosis: correlation of MR imaging, radiographic staging, radionuclide imaging, and clinical findings. *Radiology* 1987; 162:709-715.
- 29. Mitchell MD, Kundel HL, Steinberg ME, Kressel HY, Alavi A, Axel L. Avascular necrosis of the hip: comparison of MR, CT, and scintigraphy. *AJR* 1986; 147:67-71.
- 30. Narvani AA, Tsiridis E, Tai CC, Thomas P. Acetabular labrum and its tears. *Br J Sports Med* 2003; 37:207-211.
- 31. Oka M, Monu JUV. Prevalence and patterns of occult hip fractures and mimics revealed by MRI. *AJR* 2004; 182:283-288.
- 32. Parker RK, Ross GJ, Urso JA. Transient osteoporosis of the knee. Skeletal Radiol. 1997; 26:306-309.
- 33. Petersilge CA, Hasque MA, Petersilge WJ, et al. Acetabular Labral Tears: Evaluation with MR Arthrography. *Radiology* 1996;200:231-235.
- 34. Petersilge CA. From the RSNA Refresher Courses. Chronic Adult Hip Pain: MR Arthrography of the Hip. *RadioGraphics* 2000; 20:S43-S52.

- 35. Petersilge CA. MR Arthrography for Evaluation of the Acetabular Labrum. *Skeletal Radiol* 2001;30:423-430
- 36. Rafii M, Mitnick H, Klug J, Firoozmia H. Insufficiency fracture of the femoral head: MR imaging in three patients. *AJR* 1997; 168:159-163.
- 37. Reynolds D, Lucas J, Klaue K: Retroversion of the acetabulum: A cause of hip pain. *J Bone Joint Surg* 1999; 81B:281-288.
- 38. Satoshi L, Yoshitada H, Shimizu K, et al. Correlation between bone marrow edema and collapse of the femoral head in steroid-induced osteonecrosis. *AJR* 2000; 174:735-743.
- 39. Schmid MR, Notzli HP, Zanetti M, Wyss TF, Hodler J. Cartilage lesions in the hip: diagnostic effectiveness of MR arthrography. *Radiology* 2003; 226:382-386.
- 40. Siebenrock KA, Schoeniger R, Ganz R: Anterior femoro-acetabular impingement due to acetabular retroversion: Treatment with periacetabular osteotomy. *J Bone Joint Surg* 2003; 85A:278-286.
- 41. Steinbach LS, Palmer WE, Schweitzer ME. Special Focus Session. MR Arthrography. *RadioGraphics* 2002;22:1223-1246.
- 42. Steinberg ME, Hayken GD, Steinberg DR. A quantitative system for staging avascular necrosis. *JBJS (Br)* 1995;77:34-41.
- 43. Stoller DW. Magnetic Resonance Imaging in Orthopedics and Sports Medicine. 2nd Edition. Lippincott-Raven. 1997. Chapter 6. The Hip. Pgs 93-2002.
- 44. Tönnis D, Heinecke A: Acetabular and femoral anteversion: Relationship with osteoarthritis of the hip. *J Bone Joint Surg* 1999; 81A:1747-1770.
- 45. Trousdale RT, Ekkernkamp A, Reinhold G, Wallrichs SL. Periacetabular and intertrochanteric osteotomy for the treatment of osteoarthrosis in dysplastic hips. *The Journal of Bone and Joint Surgery* 1995; 77:73-85
- 46. Tuckman G, Wirth CZ. Synovial osteochondromatosis of the shoulder: MR findings. *J Comput Assist Tomography* 1989; 13:360-361.
- 47. Vande Berg B, Malghem J, Goffin EJ, Duprez TP, Maldague BE. Transient epiphyseal lesions in renal transplant recipients: presumed insufficiency stress fractures. *Radiol* 1994; 191:403-407.
- 48. Vande Berg BC, Malghem JJ, Lecouvet FE, Jamart J, Baudouin EM. Idiopathic bone marrow edema lesions of the femoral head: predictive value of MR imaging findings. *Radiol* 1999;212:527-535.
- 49. Weatherall PT (editor). Magnetic Resonance Imaging Clinics of North America: Musculoskeletal Soft Tissue Imaging, Vol 3 (4). *Philadelphia: W.B. Saunders, Co.*, 1995.
- 50. Wilson AJ, Murphy WA, Hardly DC, Totty WG. Transient osteoporosis: transient bone marrow edema? *Radiol* 1988;167:757-760.

L\DEW\Talk 5.2006/ISMRM MR Imaging of hip 5.2006